Toward global metabolomics analysis with hydrophilic interaction liquid chromatography-mass spectrometry: improved metabolite identification by retention time prediction.

نویسندگان

  • Darren J Creek
  • Andris Jankevics
  • Rainer Breitling
  • David G Watson
  • Michael P Barrett
  • Karl E V Burgess
چکیده

Metabolomics is an emerging field of postgenomic biology concerned with comprehensive analysis of small molecules in biological systems. However, difficulties associated with the identification of detected metabolites currently limit its application. Here we demonstrate that a retention time prediction model can improve metabolite identification on a hydrophilic interaction chromatography (HILIC)-high-resolution mass spectrometry metabolomics platform. A quantitative structure retention relationship (QSRR) model, incorporating six physicochemical variables in a multiple-linear regression based on 120 authentic standard metabolites, shows good predictive ability for retention times of a range of metabolites (cross-validated R(2) = 0.82 and mean squared error = 0.14). The predicted retention times improved metabolite identification by removing 40% of the false identifications that occurred with identification by accurate mass alone. The importance of this procedure was demonstrated by putative identification of 690 metabolites in extracts of the protozoan parasite Trypanosoma brucei, thus allowing identified metabolites to be mapped onto an organism-wide metabolic network, providing opportunities for future studies of cellular metabolism from a global systems biology perspective.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HPLC Retention time prediction for metabolome analysis

Liquid Chromatography Time-of-Flight Mass Spectrometry (LC-TOF-MS) is widely used for profiling metabolite compounds. LC-TOF-MS is a chemical analysis technique that combines the physical separation capabilities of high-pressure liquid chromatography (HPLC) with the mass analysis capabilities of Time-of-Flight Mass Spectrometry (TOF-MS) which utilizes the difference in the flight time of ions d...

متن کامل

HPLC Retention time prediction for metabolome analysi

Liquid Chromatography Time-of-Flight Mass Spectrometry (LC-TOF-MS) is widely used for profiling metabolite compounds. LC-TOF-MS is a chemical analysis technique that combines the physical separation capabilities of high-pressure liquid chromatography (HPLC) with the mass analysis capabilities of Time-of-Flight Mass Spectrometry (TOF-MS) which utilizes the difference in the flight time of ions d...

متن کامل

Global metabolic profiling using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry.

Currently, liquid chromatography-mass spectrometry (LC-MS) is one of the most important analytical technologies for detecting hundreds of metabolites in the field of metabolomics. A recent advance in LC that has impacted metabolomics is the development of UPLC (ultra-performance liquid chromatography). In this chapter, we describe the analytical methodologies for the global metabolic profiling ...

متن کامل

Computational Analyses of Spectral Trees from Electrospray Multi-Stage Mass Spectrometry to Aid Metabolite Identification

Mass spectrometry coupled with chromatography has become the major technical platform in metabolomics. Aided by peak detection algorithms, the detected signals are characterized by mass-over-charge ratio (m/z) and retention time. Chemical identities often remain elusive for the majority of the signals. Multi-stage mass spectrometry based on electrospray ionization (ESI) allows collision-induced...

متن کامل

Evaluation of Coupling Reversed Phase (RP), Aqueous Normal Phase (ANP) and Hydrophilic Interaction (HILIC) Liquid Chromatography with Orbitrap Mass Spectrometry for Metabolomic Studies of Human Urine

In this study, we assessed three liquid chromatographic platforms: reversed phase (RP), aqueous normal phase (ANP) and hydrophilic interaction (HILIC) for the analysis of polar metabolite standard mixtures and for their coverage of urinary metabolites. The two zwitterionic HILIC columns showed high-quality chromatographic performance for metabolite standards, improved separation for isomers and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 83 22  شماره 

صفحات  -

تاریخ انتشار 2011